If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c^2+27c-4=0
a = 7; b = 27; c = -4;
Δ = b2-4ac
Δ = 272-4·7·(-4)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-29}{2*7}=\frac{-56}{14} =-4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+29}{2*7}=\frac{2}{14} =1/7 $
| 13-5b-3b=2(-2b-3)+11 | | 11^2=x | | x-2/5=10-x/2 | | 2(1-3x)-1=2x+3-7x | | 5=60+g=80 | | 5x+4=-32+9x | | x.x-5=10 | | x+1/x=3/2 | | -2-3x=3+4 | | x+1/x=-3/2 | | 0.6b+3=14 | | 3(8+8b)+-9=-120-3b | | F(d)=-2+2d | | -5r-20=-86 | | 2x+(x+40)=1250 | | 6(n+3)=12+12n | | -8c=5c-117 | | x÷9-15=12 | | 3x=1210 | | -3(x+2)=16x | | 1/2=1/2y+1/4y | | 2(7x-3)=20 | | F(w)=11/2w+9 | | 3+x-5x=2(3-2x)-2 | | -x=22-1/3x | | 5x+8-3x=12-(4-2x) | | 2-(4x+7)=8x+9 | | 2-(4x+7)=8x-9 | | 6-4y=-4(6) | | 4+3(2x+6)=4+2x | | 2x(5x+2)=180 | | 4-4y=-4(4) |